
3

Algorithm 2 factoredSVD(

˜U, ˜D, ˜V)

Computes the SVD U⌃V H
of the matrix X implicitly given by X =

˜U ˜D ˜V H

1: (U,RU) QR(

˜U)

2: (V,RV) QR(

˜V)

3: (u,⌃, v) DenseSVD(RU
˜DRH

V)

4: return (U,⌃, V) (Uu,⌃, V v)

been rediscovered many times, but has seen a recent resurgence of interest due to theoretical analysis [6]. For example,
we have:

Theorem 1 (Average Frobenius error, Thm 10.5 in [6]). Suppose X 2 Rm⇥n
, and choose a target rank r and oversampling

parameter ⇢ � 2 where r+ ⇢  min{m,n}. Calculate Q and PQ via RandomizedSVD using q = 0 and set

e
X = PQX.

Then

kX� e
XkF 

✓
1 +

r

⇢� 1

◆1/2

kX�XrkF
where Xr is the best rank r approximation (in the Frobenius or spectral norm) of X.

Results are also known about the deviation from the expected value. In Algorithm 1 we allow q � 0 power iterations,
which is helpful in practice even though it lacks non-trivial theoretical bounds (in the Frobenius norm).

III. ALGORITHM

A. Projected gradient descent

Our minimization approach is based on the projected gradient descent algorithm:

Xi+1 = P(Xi+1 � µirf(Xi)), (3)

where Xi is the i-th iterate, rf(·) is the gradient of the loss function, µi is a step-size, and P(·) is the projector onto
rank r matrices.

More generally, we use Nesterov acceleration:

Yi+1 = (1 + �i)Xi � �iXi�1 (4)
Xi+1 = P(Yi � µirf(Yi)), (5)

where �i is chosen �i = (↵i�1 � 1)/↵i and ↵0 = 1 [16] (there are also alternative formulas in the literature).

Algorithm 3 Efficient implementation of SVP, K = {R,C}
Require: kAk, u0 2 Km⇥r, v0 2 Kn⇥r, d0 2 Kr

Require: Function A : (u, d, v) 7! A(u diag(d)vH)

Require: Function At : (z, w) 7! A⇤
(z)w

Require: Function At

H
: (z, w) 7! (A⇤

(z))

Hw
1: µ 4/kAk2
2: v�1 0, u�1 0, d�1 0

3: for i = 0, 1, . . . do

4: Compute �i // See text
5: uy [ui, ui�1], vy [vi, vi�1]

6: dy [(1 + �)di,��idi�1] // Yi+1 = (1 + �i)Xi � �iXi�1

7: z A(uy, dy, vy) // Compute the residual
8: Define the functions

h : w 7! uy diag(dy)vHy w � µAt(z, w)
hH

: w 7! vy diag(dy)uH
y w � µAtH

(z, w)
9: (ui+1, di+1, vi+1) RandomizedSVD(h, hH , r)

10: end for

11: return X uidivHi // If desired

Algorithm 3 shows implementation details that are important for keeping low-memory requirements. The implemen-
tation of maps like A and At depends on the structure of A; see section V-A for explicit examples.

