
Qubits Dimension Time per iteration Time to 10�1 error

SVP Splitting SVP Splitting

8 256 0.012 s 0.006 s 0.64 s 5.25 s
9 512 0.045 s 0.028 s 2.90 s 47.4 s
10 1024 0.225 s 0.156 s 17.1 s 516.3 s

Table 1: Average time per iteration and total time to reach a given accuracy, for a noisy quantum tomography
recovery problem. The splitting approach is slightly faster per iteration, but requires more iterations overall.
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Figure 6: The same data as presented in Table 1, showing the error as a function of time.

median error than SVP in a small range of samples p, but even for this range of p it is worse in mean (not shown)
and in the success rate because, while it sometimes returns a slightly more accurate solution, it is less reliable over
all the independent trials. In the noisy case of Fig. 5, the SVP approach is the clear winner for accuracy.

We now examine running times of the SVP approach and the splitting approach. The splitting approach avoids
the SVD, but still requires A and At. For quantum tomography, these operations are relatively expensive compared
to the SVD (in contrast to matrix completion), so the speed advantage of the splitting approach is diminished.
Table 1 shows that on average, the splitting approach is roughly twice as e�cient per iteration regardless of the
dimension. However, this slight advantage is meaningless because the splitting approach converges much more
slowly, as shown in Table 1 and Figure 6. Using a better starting point speeds the convergence, but it is not
clear how to obtaining a better starting point cheaply. The data in these plots used similar settings to previous
simulations. The number of measurements was p = .375n log(n)r, r = 1, and " was chosen to give a SNR of 30 dB.
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A Proofs

Proof of Theorem 2. There are three aspects to the proof. Even without approximate SVD calculations, the problem
is non-convex, so we must leverage the R-RIP to prove that iterates converge. Mixed in with this calculation is the
approximate nature of our rank ` point e

Xi+1, where we will apply the bounds from Theorem 1. Finally, we relate
e
Xi+1 to its rank r version Xi+1.

We start with a useful lemma:

Lemma 1. Let A : Rm⇥n ! Rp
be a linear operator that satisfies the R-RIP with constant �r0 . Then, 8v 2 Rp

,

the following holds true:

kPS(A⇤v)kF 
p

1 + �r0kvk2, (12)
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