Compressed Sensing

LECTURE #1-2
Motivation & geometric insights

Prof. Dr. Volkan Cevher
volkan.cevher@epfl.ch
LIONS/Laboratory for Information and Inference Systems
Motivation:

- solve bigger / more important problems
- decrease acquisition times / costs
- entertainment / new consumer products...

Major trends

- higher resolution / denser sampling
- large numbers of sensors
- increasing # of modalities / mobility

160MP
Problems of the current paradigm

• **Sampling at Nyquist rate**
 - expensive / difficult

• **Data deluge**
 - communications / storage

• **Sample then compress**
 - inefficient / impossible / not future proof
Recommended for you: A more familiar example

- Recommender systems
 - observe partial information
 - “ratings”
 - “clicks”
 - “purchases”
 - “compatibilities”
• Recommender systems
 – observe partial information
 “ratings”
 “clicks”
 “purchases”
 “compatibilities”

• The Netflix problem
 – from approx. 100,000,000 ratings predict 3,000,000 ratings
 – 17770 movies x 480189 users
 – how would you automatically predict?
• Recommender systems
 – observe partial information
 “ratings”
 “clicks”
 “purchases”
 “compatibilities”

• The Netflix problem
 – from approx. 100,000,000 ratings predict 3,000,000 ratings
 – 17770 movies x 480189 users
 – how would you automatically predict?
 – what is it worth?
Theoretical set-up

- Matrix completion for Netflix

$$X = \begin{array}{c}
\text{users} \\
\end{array} \rightarrow \begin{array}{c}
\text{movies} \\
\end{array}$$
Theoretical set-up

- Matrix completion for Netflix

\[X = \Phi(X) + n \]

- Mathematical underpinnings: \textit{compressive sensing}

\textit{CS: when we have less samples than the ambient dimension}
Linear Inverse Problems

\[u \begin{bmatrix} M \times 1 \end{bmatrix} = \Phi \begin{bmatrix} M \times N \ (M < N) \end{bmatrix} x \begin{bmatrix} N \times 1 \end{bmatrix} \]

Myriad applications involve linear dimensionality reduction
deconvolution to data mining
compression to compressive sensing
geophysics to medical imaging

[Baraniuk, C, Wakin 2010; Carin et al. 2011]
Linear Inverse Problems

- **Challenge:** Null space of Φ: $\mathcal{N}(\Phi)$

 $$\Phi x' = \Phi(x + v) = u, \ \forall v \in \mathcal{N}(\Phi)$$
Linear Inverse Problems

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Probabilistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>$\superscript{\text{parsity}}$</td>
<td>distribution</td>
</tr>
<tr>
<td>Metric</td>
<td>ℓ_p-norm*</td>
<td>likelihood/posterior</td>
</tr>
</tbody>
</table>

* $: \|x\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$
Deterministic Low-Dimensional Models
Sparse representations

- **Sparse** signal α

 only K out of N coordinates nonzero

 $K \ll N$

$X = \begin{bmatrix} x_1 & \cdots & x_N \end{bmatrix} \in \mathbb{R}^{N \times 1}$

$S = \{ i : x_i \neq 0 \}$

$\|\alpha\|_0 = |S| = K$

$K = 2$

\mathbb{R}^3

$\alpha \in \Sigma_2$

$|\alpha_i|$
Sparse representations

- **Sparse** signal \mathbf{x}
 - only K out of N coordinates nonzero in an *appropriate representation*

- Sparse representations
 - *Sparse* transform coefficients α
 - Basis representations
 - $\Psi \in \mathbb{R}^{N \times N}$
 - Wavelets, DCT...
 - Frame representations
 - $\Psi \in \mathbb{R}^{N \times L}$, $L > N$
 - Gabor, curvelets, shearlets...
 - Other *dictionary* representations...
Sparse representations

- Sparse signal:
 - only K out of N coordinates nonzero

 $$K \ll N$$

- Sparse representations:
 - *sparse* transform coefficients

- A fundamental impact:
Sparse representations

- Sparse signal:
 only K out of N coordinates nonzero

\[K \ll N \]

- Sparse representations:
 sparse transform coefficients

- A fundamental impact:
Sparse representations

• Sparse signal:

 only K out of N
 coordinates nonzero

 \[K \ll N \]

• Sparse representations:

 sparse transform coefficients

• A fundamental impact:
Sparse representations

• Sparse signal:
 only K out of N coordinates nonzero

 \[K \ll N \]

• Sparse representations:
 \textit{sparse} transform coefficients

• A fundamental impact:
 \[\Phi \]

 becomes effectively low dimensional*

 \[M \times K \]

\[x = \Psi \times \alpha \]

\[u = \Phi' \alpha \]

\[M > K \]

*: If we knew the locations of the coefficients. \textit{More on this later.}
Low-dimensional signal models

N pixels

$sparse$ signals

\mathbb{R}^N

$K \ll N$

large wavelet coefficients (blue = 0)

\mathbb{R}^N

low-rank matrices

Information level:

nonlinear models
Low-dimensional signal models

- These lectures

Low-dimensional models based on linear representations

sparse signals

low-rank matrices

nonlinear models
Linear representation of low-dimensional models

• A key notion in sparse representation

 – synthesis of the signal using a few vectors

• A slightly different mathematical formalism for generalization

Synthesis model: \[x = \sum_{i=1}^{\vert \mathcal{A} \vert} a_i c_i \]

\(a_i \in \mathcal{A}, c_i \geq 0 \)

\(a_i \): atoms
\(\mathcal{A} \): atomic set

i.e., linear (positive) combination of elements from an atomic set

[Chandrasekaran et al. 2010]
Linear representation of low-dimensional models

- A key notion in sparse representation
 - synthesis of the signal using a few vectors

- Sparse representations via the atomic formulation
 - Example:
 \[
 x = \sum_{i=1}^{\|A\|} a_i c_i
 \]
 \[a_i \in A, c_i \geq 0\]
 \[a_i: \text{ atoms}\]
 \[A: \text{ atomic set}\]
 \[
 \Psi = [\psi_1, \ldots, \psi_L]
 \]
 \[\text{rank}(\Psi) = N\]
 \[
 \mathcal{A} = \{\psi_1, \ldots, \psi_L, -\psi_1, \ldots, -\psi_L\}
 \]
 \[c_i = \begin{cases}
 \alpha_i, & \alpha_i > 0; \\
 0, & \text{otherwise.}
 \end{cases} \quad i = 1, \ldots, L
 \]
 \[c_{i+L} = \begin{cases}
 -\alpha_i, & \alpha_i < 0; \\
 0, & \text{otherwise.}
 \end{cases}
 \]
Linear representation of low-dimensional models

- Basic definitions on **low-dimensional atomic representations**

\[x = \sum_{i=1}^{\left| A \right|} a_i c_i \]

\[a_i \in A, c_i \geq 0 \]

\[\|c_i\|_0 \leq K \]

\[K \ll N \]
Linear representation of low-dimensional models

- Basic definitions on low-dimensional atomic representations

\[x = \sum_{i=1}^{\left| \mathcal{A} \right|} a_i c_i \quad a_i \in \mathcal{A}, c_i \geq 0 \]

\[\| c_i \|_0 \leq K \quad K \ll N \]

- \(\text{conv}(\mathcal{A}) \): convex hull of atoms in \(\mathcal{A} \)

\[\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} \]

\[\text{conv}(\mathcal{A}) = \left\{ \sum_{i} a_i \beta_i : a_i \in \mathcal{A}, \beta_i \in \mathbb{R}_+, \sum_{i=1}^{n} \beta_i = 1, n = 1, 2, \ldots, |\mathcal{A}| \right\} \]
Linear representation of low-dimensional models

- Basic definitions on low-dimensional atomic representations

\[x = \sum_{i=1}^{|A|} a_i c_i \]

- \(a_i \in A, c_i \geq 0 \)
- \(\|c_i\|_0 \leq K \)

\[K \ll N \]

\(\text{conv}(A) : \) convex hull of atoms in \(A \)

\[A = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} \]

\[\text{conv}(A) = \left\{ \sum_i a_i \beta_i : a_i \in A, \beta_i \in \mathbb{R}_+, \sum_{i=1}^{n} \beta_i = 1, n = 1, 2, \ldots, |A| \right\} \]
Linear representation of low-dimensional models

- Basic definitions on low-dimensional atomic representations

$$x = \sum_{i=1}^{|A|} a_i c_i$$

- $a_i \in A$, $c_i \geq 0$
- $\|c_i\|_0 \leq K$

- $\text{conv}(A)$: convex hull of atoms in A

$$A = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}$$

- $\|x\|_A$: atomic norm*

$$\|x\|_A = \inf\{t > 0 : x \in t \times \text{conv}(A)\}$$

*: requires A to be centrally symmetric
Linear representation of low-dimensional models

- Basic definitions on low-dimensional atomic representations

\[x = \sum_{i=1}^{\|A\|} a_i c_i \]

\[a_i \in A, c_i \geq 0 \]

\[\|c_i\|_0 \leq K \]

- \(\text{conv}(A) \): convex hull of atoms in \(A \)

\[A = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} \]

- \(\|x\|_A \): atomic norm*

\[\|x\|_A = \inf\{ t > 0 : x \in t \times \text{conv}(A) \} \]

\[\|x\|_A = \frac{6}{5} \]

*: requires \(A \) to be centrally symmetric
Linear representation of low-dimensional models

- Basic definitions on low-dimensional atomic representations

\[x = \sum_{i=1}^{\lvert A \rvert} a_i c_i \]

\[a_i \in A, c_i \geq 0 \]

\[\lVert c_i \rVert_0 \leq K \]

- \(\text{conv}(A) \): convex hull of atoms in \(A \)

\[A = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} \]

- \(\lVert x \rVert_A \): atomic norm*

\[\lVert x \rVert_A = \inf \{ t > 0 : x \in t \times \text{conv}(A) \} \]

\[x = \begin{bmatrix} -1/5 \\ 1 \end{bmatrix} \]

\[\lVert x \rVert_A = \frac{6}{5} \]

Alternative:

\[\lVert x \rVert_A = \inf \left\{ \sum_{i=1}^{\lvert A \rvert} c_i : x = \sum_{i=1}^{\lvert A \rvert} a_i c_i, c_i \geq 0, \forall a_i \in A \right\} \]

*: requires \(A \) to be centrally symmetric
Linear representation of low-dimensional models

Examples with easy forms:

- **sparse vectors**
 \[A = \{ \pm e_i \}_{i=1}^{N} \]
 \[\text{conv}(A) = \text{cross-polytope} \]
 \[\|x\|_A = \|x\|_1 \]

- **low-rank matrices**
 \[A = \{ A : \text{rank}(A) = 1, \|A\|_F = 1 \} \]
 \[\text{conv}(A) = \text{nuclear norm ball} \]
 \[\|x\|_A = \|x\|_* \]

- **binary vectors**
 \[A = \{ \pm 1 \}^N \]
 \[\text{conv}(A) = \text{hypercube} \]
 \[\|x\|_A = \|x\|_\infty \]
Linear representation of low-dimensional models

Examples with easy forms:

- **sparse vectors**
 \[A = \{ \pm e_i \}_{i=1}^{N} \]

Examples with no-so-easy forms:

- A: infinite set of unit-norm rank-one tensors
- A: finite (but large) set of permutation matrices
- A: infinite set of orthogonal matrices
- A: infinite set of matrices constrained by eigenvalues
- A: infinite set of measures
- A: finite (but large) set of cut matrices

\[\text{conv}(A) = \text{hypercube} \]
\[\| x \|_A = \| x \|_\infty \]

[Chandrasekaran et al. 2010]
Linear representation of low-dimensional models

Pop-quiz:

What is $\|x\|_A$?

$$\|x\|_A = \inf\{t > 0 : x \in t \times \text{conv}(A)\}$$
Linear representation of low-dimensional models

Pop-quiz:

HINT:

\[\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \|x_G\|_2 = 1 \right\} \]

\[G = \{2, 3\} \]

What is \(\|x\|_{\mathcal{A}} \)?

\[\|x\|_{\mathcal{A}} = \inf\{t > 0 : x \in t \times \text{conv}(\mathcal{A})\} \]
Linear representation of low-dimensional models

Pop-answer:

\[\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \mid \|x_G\|_2 = 1 \right\} \]

What is \(\|x\|_\mathcal{A} \)?

\[\|x\|_\mathcal{A} = |x_1| + \|x_G\|_2 \]

\(G = \{2, 3\} \)
Towards algorithms: a geometric perspective

Other key concepts:

- Cone C: $x, y \in C \Rightarrow tx + \omega y \in C, \forall t, \omega \in \mathbb{R}_+$
Towards algorithms: a geometric perspective

Other key concepts:

• Cone \mathcal{C}: $x, y \in \mathcal{C} \Rightarrow tx + \omega y \in \mathcal{C}, \forall t, \omega \in \mathbb{R}_+$

• Tangent cone of x^* with respect to $\|x^*\|_{\mathcal{A}\text{conv}(\mathcal{A})}$:

$$T_{\mathcal{A}}(x^*) = \text{cone}\{z - x^* : \|z\|_{\mathcal{A}} \leq \|x^*\|_{\mathcal{A}}\}$$

$\|x^*\|_{\mathcal{A}\text{conv}(\mathcal{A})}$
Towards algorithms: a geometric perspective

Other key concepts:

- Cone \mathcal{C}: $x, y \in \mathcal{C} \Rightarrow tx + \omega y \in \mathcal{C}, \forall t, \omega \in \mathbb{R}_+$

- Tangent cone of x^* with respect to $\|x^*\|_{\mathcal{A}\text{conv}(\mathcal{A})}$:

$$T_{\mathcal{A}}(x^*) = \text{cone}\{z - x^* : \|z\|_{\mathcal{A}} \leq \|x^*\|_{\mathcal{A}}\}$$

Tangent cone is the set of descent directions where you do not increase the atomic norm.
Towards algorithms: a geometric perspective

Other key concepts:

- Cone \mathcal{C}: $x, y \in \mathcal{C} \Rightarrow tx + \omega y \in \mathcal{C}, \forall t, \omega \in \mathbb{R}_+$

- Tangent cone of x^* with respect to $\|x^*\|_{\mathcal{A}\text{conv}(\mathcal{A})}$:

$$T_{\mathcal{A}}(x^*) = \text{cone}\{z - x^* : \|z\|_{\mathcal{A}} \leq \|x^*\|_{\mathcal{A}}\}$$

Tangent cone is the set of descent directions where you do not increase the atomic norm.
Towards algorithms: a geometric perspective

Null space of Φ: $\mathcal{N}(\Phi)$

$\Phi v = 0, \forall v \in \mathcal{N}(\Phi)$
Towards algorithms: a geometric perspective

\[u \quad \Phi \quad x^* \]

\[M \times 1 \quad M \times N \quad M < N \quad N \times 1 \]

\[\mathcal{N}(\Phi) \]

\[x^* \]
Towards algorithms: a geometric perspective

Consider the criteria:

\[\hat{x} = \arg \min_{x: u = \Phi x} \|x\|_A \]
Towards algorithms: a geometric perspective

Consider the criteria:

\[
\hat{x} = \arg \min_{x: u = \Phi x} \|x\|_A
\]
Towards algorithms: a geometric perspective

Consider the criteria:

\[
\hat{x} = \arg \min_{x:u=\Phi x} \|x\|_A
\]
Towards algorithms: a geometric perspective

Consider the criteria:

\[
\hat{x} = \arg \min_{x : u = \Phi x} \| x \|_A
\]
Towards algorithms: a geometric perspective

Key observation:

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \Rightarrow x^* = \arg \min_{x : u = \Phi x} \|x\|_A \]
Towards algorithms: a geometric perspective

How about noise?

\[\| u - \Phi x \| \leq \sigma \]

\[\| x^* \|_{\mathcal{A}\text{conv}(\mathcal{A})} \]

\[T_{\mathcal{A}}(x^*) \]

\[\mathcal{N}(\Phi) \]

\[\hat{x} = \arg \min_{x : \| u - \Phi x \| \leq \sigma} \| x \|_{\mathcal{A}} \]

\[u \]

\[\Phi \]

\[x^* \]

\[n \]

\[\| u \|_{M \times 1} \]

\[\| \Phi \|_{M \times N (M < N)} \]

\[\| x^* \|_{N \times 1} \]

\[\| n \| \leq \sigma \]
Towards algorithms: a geometric perspective

How about noise?

Stability assumption:

\[\| \Phi v \| \geq \epsilon \| v \|, \forall v \in T_{A}(x^*) \]
Towards algorithms: a geometric perspective

How about noise?

$u \Phi x^* + n$

$M \times 1 \quad M \times N \quad M \times 1$

$N \times 1$

RN

x^*

$T_A(x^*)$

$N(\Phi)$

Stability assumption:

$\|\Phi v\| \geq \epsilon \|v\|, \forall v \in T_A(x^*)$

Note that if $N(\Phi) \cap T_A(x^*) = \{0\}$

$\Rightarrow \|\Phi v\| > 0, \forall v \neq 0$
Towards algorithms: a geometric perspective

How about noise?

Stability assumption:
\[\|\Phi v\| \geq \epsilon \|v\|, \forall v \in T_A(x^*) \]

want epsilon large to minimize overlap between \(\|x^*\|_A\) and \(\|u - \Phi x\| \leq \sigma\)

For this 2D example: \(\|\Phi v\| \geq \|v\| \sin(\varphi) \min_i \|\Phi(i,:)\|\)

Matlab notation

\[u = \Phi x^* + n \]

\(M \times 1\) \(M \times N (M < N)\) \(M \times 1\)

\(N \times 1\)
Towards algorithms: a geometric perspective

How about noise?

Stability assumption:
\[\|\Phi v\| \geq \epsilon\|v\|, \forall v \in T_A(x^*) \]

\[\hat{x} = \arg\min_{x:\|u - \Phi x\| \leq \sigma} \|x\|_A \]

\[\Rightarrow \|x^* - \hat{x}\| \leq \frac{2\sigma}{\epsilon} \]
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

without knowing \(x^ \)
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

YES: with randomized measurements!

Gordon’s Minimum Restricted Singular Values Theorem has a probabilistic characterization.

\[\text{Prob}(\min_v \|\Phi v\| \geq \epsilon) \]

∀v ∈ T_A(x^*), \|v\| = 1

without knowing x^
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

\[u \quad \Phi \quad x^* \]

Gordon’s Minimum Restricted Singular Values Theorem has a probabilistic characterization.

Key concept: **width of the tangent cone!**

without knowing \(x^ \)
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_{A}(x^*) = \{0\} \]

Gordon’s Minimum Restricted Singular Values Theorem has a probabilistic characterization.

Gaussian width of \(S \subseteq \mathbb{R}^M \)

\[w(S) = \mathbb{E} \left[\sup_{z \in S} g^T z \right] ; \ g \sim \mathcal{N}(0, I) \]

\(\lambda_k \) expected norm of a \(k \)-dimensional Gaussian random vector:

\[\lambda_k = \sqrt{\mathbb{E} \left[\sum_{i=1}^{k} g_i^2 \right]} = \frac{\sqrt{2} \Gamma((k + 1)/2)}{k/2} \]

without knowing \(x^ \)
Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

Gordon’s Minimum Restricted Singular Values Theorem has a probabilistic characterization.

Let \(\Omega \) be a closed subset of the unit sphere and \(A \) be an \(M \times N \) matrix with iid \(\mathcal{N}(0, 1) \) entries. Then, if \(\lambda_k \geq w(\Omega) + \epsilon \):

\[
P \left[\min_{z \in \Omega} \|Az\|_2 \geq \epsilon \right] \geq 1 - \frac{1}{2} \frac{1}{\epsilon} \exp \left(\frac{-1}{8} (\lambda_k - w(\Omega) \epsilon)^2 \right)
\]

without knowing \(x^ \)
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

\[\Phi \sim \text{iid } \mathcal{N}(0, 1/M), \Omega = T_A(x^*) \cap \mathbb{S}^{N-1} \]

Let \(\Omega \) be a closed subset of the unit sphere and \(A \) be an \(M \times N \) matrix with iid \(\mathcal{N}(0, 1) \) entries. Then, if \(\lambda_k \geq w(\Omega) + \epsilon \):

\[P \left[\min_{z \in \Omega} \|Az\|_2 \geq \epsilon \right] \geq 1 - \frac{1}{2} e^{-\frac{1}{18} (\lambda_k - w(\Omega) - \epsilon)^2} \]

without knowing \(x^ \)

Gordon’s Minimum Restricted Singular Values Theorem has a probabilistic characterization.
Towards algorithms: a geometric perspective

Key observation:

\[\mathcal{N}(\Phi) \cap T_\mathcal{A}(x^*) = \{0\} \implies x^* = \arg\min_{x : u = \Phi x} \|x\|_\mathcal{A} \]

\[M \geq w(\Omega)^2 + O(1) \]
Towards algorithms: a geometric perspective

How about noise?

\[u \Phi + x^* + n \]

\[M \times 1 \quad M \times N \quad M \times 1 \]

\[M \times 1 \quad M < N \quad N \times 1 \]

Stability assumption:

\[\| \Phi v \| \geq \epsilon \| v \|, \forall v \in T_A(x^*) \]

\[\hat{x} = \arg \min_{x : \| u - \Phi x \| \leq \sigma} \| x \|_A \]

\[\Rightarrow \| x^* - \hat{x} \| \leq \frac{2\sigma}{\epsilon} \]

\[M \geq \frac{w(\Omega)^2}{(1-\epsilon)^2} + O(1) \]
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

Gordon’s Minimum Restricted Singular Values Theorem has a probabilistic characterization.

\[g \sim_{\text{iid}} \mathcal{N}(0, 1) \]

\[\Phi \sim_{\text{iid}} \mathcal{N}(0, 1/M), \Omega = T_A(x^*) \cap S^{N-1} \]

\[w(T_A(x^*) \cap S^{N-1}) \leq E_g [\text{dist} (g, T_A(x^*))] \]

\[w^2(T_A(x^*) \cap S^{N-1}) + w^2(T_A(x^*) \cap S^{N-1}) \leq N \]

\[N \geq 9 \]

\[w(T_A(x^*) \cap S^{N-1}) \leq \sqrt{\log \left(\frac{4}{\text{vol}(T_A(x^*) \cap S^{N-1})} \right)} \]

without knowing \(x^ \)
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

\[A = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} \]

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \text{ w.p. } 1/2 \]

\[\Rightarrow x^* = \arg \min_{x:u=\Phi x} \|x\|_1 \]

without knowing 1-sparse \(x^ \) and 1-random measurement
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\} \]

\[\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} \]

\[\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\} \text{ w.p. } 1/2 \]

\[\Rightarrow x^* = \arg \min_{x:u=\Phi x} \|x\|_1 \]

\[\bar{\mathcal{A}} = \left\{ \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} \sqrt{3}/2 \\ -1/2 \end{bmatrix} \right\} \]

\[\mathcal{N}(\Phi) \cap T_{\bar{\mathcal{A}}}(x^*) = \{0\} \text{ w.p. } 1/3 \]

\[\Rightarrow x^* = \arg \min_{x:u=\Phi x} \|x\|_{\bar{\mathcal{A}}} \]

without knowing 1-sparse \(x^\) and 1-random measurement
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_{A}(x^*) = \{0\} \]

\[A = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} \]

\[\mathcal{N}(\Phi) \cap T_{A}(x^*) = \{0\} \text{ w.p. } 1/2 \]

\[\Rightarrow x^* = \arg \min_{x:u=\Phi x} \|x\|_1 \]

\[\tilde{A} = \left\{ \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} \sqrt{3}/2 \\ -1/2 \end{bmatrix} \right\} \]

\[\mathcal{N}(\Phi) \cap T_{\tilde{A}}(x^*) = \{0\} \text{ w.p. } 1/3 \]

\[\Rightarrow x^* = \arg \min_{x:u=\Phi x} \|x\|_{\tilde{A}} \]

\[\tilde{\mathcal{A}} = \{\|x\|_2 = 1\} \]

\[\mathcal{N}(\Phi) \cap T_{\tilde{\mathcal{A}}}(x^*) = \{0\} \text{ w.p. } 0 \]

\[\Rightarrow x^* = \arg \min_{x:u=\Phi x} \|x\|_2 \]

without knowing 1-sparse \(x^ \) and 1-random measurement
Towards algorithms: a geometric perspective

Can we guarantee the following?*

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

A projected 6D hypercube with 64 vertices

Blessing-of-dimensionality!

http://www.agrell.info/erik/chalmers/hypercubes/
Towards algorithms: a geometric perspective

Pop-quiz:

$$\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\}$$

$$\bar{A} = \left\{ \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} \sqrt{3}/2 \\ -1/2 \end{bmatrix} \right\}$$

$$\mathcal{N}(\Phi) \cap T_{\bar{A}}(x^*) = \{0\} \text{ w.p. } ???$$

$$\Rightarrow x^* = \arg \min_{x:u=\Phi x} \|x\|_{\bar{A}}$$

What is the probability that we can determine a 2-sparse x^* with 1-random measurement?
Towards algorithms: a geometric perspective

Pop-answer:

\[\mathcal{N}(\Phi) \cap T_A(x^*) = \{0\} \]

\[\tilde{A} = \left\{ \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} \sqrt{3}/2 \\ -1/2 \end{bmatrix} \right\} \]

\[\mathcal{N}(\Phi) \cap T_{\tilde{A}}(x^*) = \{0\} \text{ w.p. 0} \]

\[\Rightarrow x^* = \arg \min_{x: u = \Phi x} \|x\|_{\tilde{A}} \]

Tangent cone is too wide!
Need at least 2 measurements!
Take home messages

<table>
<thead>
<tr>
<th>Underlying Model</th>
<th>Atomic Norm</th>
<th>Gaussian Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-sparse vector in \mathbb{R}^N</td>
<td>ℓ_1-norm</td>
<td>$(2K + 1) \log(N - K)$</td>
</tr>
<tr>
<td>$N \times N$ rank-R matrix</td>
<td>nuclear norm</td>
<td>$3R(2N - R) + 2(N - R - R^2)$</td>
</tr>
<tr>
<td>sign vector ${\pm 1}^N$</td>
<td>ℓ_∞-norm</td>
<td>$N/2$</td>
</tr>
<tr>
<td>$N \times N$-perm. matrix</td>
<td>Birkhoff polytope norm</td>
<td>$9N \log(N)$</td>
</tr>
<tr>
<td>$N \times N$ orth. matrix</td>
<td>spectral norm</td>
<td>$(3N^2 - N)/4$</td>
</tr>
</tbody>
</table>

[Chandrasekaran et al. 2010]

convex polytope \leftrightarrow atomic norm

- geometry (and algebra) of representations in high dimensions

geometric perspective \leftrightarrow convex criteria

- convex optimization algorithms in high dimensions

tangent cone width \leftrightarrow # of randomized samples

- probabilistic concentration-of-measures in high dimensions
Back to the initial example

- Matrix completion for Netflix

 $X = \begin{pmatrix}
 \text{users} & \text{movies}
 \end{pmatrix}$

 $M \times N$

- What is low-rank?

 $X = \begin{pmatrix}
 \text{users} & \text{movies}
 \end{pmatrix}$

 $R \times N$

 $M \times R$

 $R \ll \min\{M, N\}$
Back to the initial example

- Matrix completion for Netflix: 17,770 movies x 480,189 users

\[X = \begin{pmatrix} \ldots \end{pmatrix} \]

\[M \times N \]

- What does the simple low-rank assumption buy?

Leaderboard

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team Name</th>
<th>Best Score</th>
<th>Improvement</th>
<th>Last Submit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Ensemble</td>
<td>0.8553</td>
<td>10.10</td>
<td>2009-07-26 18:38:22</td>
</tr>
<tr>
<td>2</td>
<td>BellKor’s Pragmatic Chaos</td>
<td>0.8554</td>
<td>10.09</td>
<td>2009-07-26 18:18:28</td>
</tr>
<tr>
<td>3</td>
<td>Grand Prize Team</td>
<td>0.8571</td>
<td>9.91</td>
<td>2009-07-24 13:07:49</td>
</tr>
<tr>
<td>4</td>
<td>Opera Solutions and Vandelau United</td>
<td>0.8573</td>
<td>9.99</td>
<td>2009-07-25 20:05:52</td>
</tr>
<tr>
<td>5</td>
<td>Vandelau Industries</td>
<td>0.8576</td>
<td>9.83</td>
<td>2009-07-25 02:49:53</td>
</tr>
<tr>
<td>6</td>
<td>Pragmatic Theory</td>
<td>0.8582</td>
<td>9.80</td>
<td>2009-07-12 15:09:53</td>
</tr>
<tr>
<td>7</td>
<td>BellKor in BigChaos</td>
<td>0.8590</td>
<td>9.71</td>
<td>2009-07-26 12:57:25</td>
</tr>
<tr>
<td>8</td>
<td>Dace</td>
<td>0.8603</td>
<td>9.58</td>
<td>2009-07-24 17:18:43</td>
</tr>
<tr>
<td>9</td>
<td>Opera Solutions</td>
<td>0.8611</td>
<td>9.49</td>
<td>2009-07-20 18:02:08</td>
</tr>
<tr>
<td>10</td>
<td>BellKor</td>
<td>0.8612</td>
<td>9.48</td>
<td>2009-07-26 17:11:11</td>
</tr>
<tr>
<td>11</td>
<td>BigChaos</td>
<td>0.8613</td>
<td>9.47</td>
<td>2009-06-23 23:05:52</td>
</tr>
<tr>
<td>12</td>
<td>Feeds2</td>
<td>0.8613</td>
<td>9.47</td>
<td>2009-07-24 20:08:46</td>
</tr>
</tbody>
</table>

Grand Prize - RMSE <= 0.8563

Quite a lot of extrapolation power!
There are two types of people in this world:

Those who can extrapolate from incomplete data
There are two types of people in this world:

Those who can extrapolate from incomplete data and do this fast with theoretical guarantees
Sampling/sketching design

scene

single photon detector

random pattern on DMD array

- Structured random matrices
- 1-bit CS $u = \text{sign}(\Phi x)$
- expanders & extractors

+ Coding theory
+ Theoretical computer science
+ Learning theory
+ Databases
Structured recovery

- **Sparsity**

Sparse vector

only K out of N coordinates nonzero

$$K \ll N$$

$K = 2$

\mathbb{R}^3

$x \in \Sigma_2$
Structured recovery

- **Sparsity**

\[
\left| x_i \right| \\
K \quad \text{sorted index} \quad N
\]

Structured sparse vector

only certain K out of N coordinates nonzero

\[
K \ll N
\]
Structured recovery

- **Structured sparsity**

 + requires smaller sketches
 + enhanced recovery
 + faster recovery

 \[P_{\Sigma_M}(u; K) \in \arg \min_x \{ \|x - u\| : x \in \Sigma_{MK} \} \]

 support of the solution \(<> \) modular approximation problem

 integer linear program

matroid structured sparse models

clustered /diversified sparsity models

tightly connected with max-cover, binpacking, knapsack problems

- Recovery with low-dimensional models, including low-rank...
Quantum tomography

• Quantum state estimation
 a state of n possibly-entangled qubits takes $\sim 2^n$ bits to specify, even approximately

• Recovery with rank and trace constraints
 \[\text{with } M = O(N) \]
 1. Create Pauli measurements (semi-random)
 2. Estimate $\text{Tr}(\Phi_i \rho)$ for each $1 \leq i \leq M$
 3. Find any “hypothesis state” σ st $\text{Tr}(\Phi_i \sigma) \approx \text{Tr}(\Phi_i \rho)$ for all $1 \leq i \leq M$

• Huge dimensional problem!
 – (desperately) need scalable algorithms
 – also need theory for perfect density estimation

+Theoretical computer science
+Databases
+Information theory
+Optimization
A fundamental problem: given \((y_i, x_i): \mathbb{R} \times \mathbb{R}^d, i = 1, \ldots, m\), learn a mapping \(f: x \rightarrow y\).

Our interest: non-parametric functions, graphs (e.g., social networks), dictionary learning...

Rigorous foundations: sample complexity, approximation guarantees, tractability.

Key tools: sparsity/low-rankness, submodularity, smoothness.
Compressible priors

+ Learning theory
+ Statistics
+ Information theory

- **Goal:** seek distributions whose iid realizations \(x_i \sim p(x) \) can be well-approximated as *sparse*

Definition:

The PDF \(p(x) \) is a *q-compressible prior* with parameters \((\epsilon, \kappa)\), when

\[
\lim_{N \to \infty} \bar{\sigma}_{k_N}(x)_q^{a.s.} \leq \epsilon, \text{ (a.s.: almost surely)};
\]

for any sequence \(k_N \) such that \(\lim_{N \to \infty} \inf \frac{k_N}{N} \geq \kappa \), where \(\epsilon \ll 1 \) and \(\kappa \ll 1 \).

relative k-term approximation:

\[
\bar{\sigma}_k(x)_q = \frac{\sigma_k(x)_q}{\|x\|_q}
\]

\[
\sigma_k(x)_q := \inf_{\|u\|_0 \leq k} \|x - u\|_q
\]
Compressible priors

+Learning theory
+Information theory

• **Goal:** seek distributions whose iid realizations can be well-approximated as *sparse*

\[
\|x\|_{\ell^p} := \sup_i \left\{ |x(i)| \cdot i^{1/p} \right\} \leq R
\]

\[
\frac{\sigma_{\kappa N}(x)_q}{\|x\|_q} \leq \epsilon
\]

Classical:

New:
Compressible priors

• **Goal:** seek distributions whose iid realizations can be well-approximated as *sparse*

• **Motivations:**
 - deterministic embedding scaffold for the probabilistic view
 - analytical proxies for sparse signals
 - learning (e.g., dim. reduced data)
 - algorithms (e.g., structured sparse)
 - information theoretic (e.g., coding)

lots of applications in vision, image understanding / analysis

+Learning theory
+Statistics
+Information theory
References

References

References

References

