Circuits and Systems I

LECTURE #7
Bandlimited Reconstruction

Prof. Dr. Volkan Cevher
LIONS/Laboratory for Information and Inference Systems
License Info for SPFirst Slides

• This work released under a Creative Commons License with the following terms:
 • Attribution
 ▪ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
 • Non-Commercial
 ▪ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.
 • Share Alike
 ▪ The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
• Full Text of the License
• This (hidden) page should be kept with the presentation
Outline - Today

• Today <> Section 4-4
 Section 4-5

• Next week <> BONUS EXAM REVIEW!

• Next lecture <> Section 5-1
 Section 5-2
 Section 5-3

CSI Progress Level:
Lecture Objectives

• FOLDING: a type of ALIASING
• DIGITAL-to-ANALOG CONVERSION is
 ‒ Reconstruction from samples
 • SAMPLING THEOREM applies
 ‒ Smooth Interpolation
• Mathematical Model of D-to-A
 ‒ SUM of SHIFTED PULSES
 • Linear Interpolation example
• A-to-D
 ▪ Convert $x(t)$ to **numbers** stored in memory
• D-to-A
 ▪ Convert $y[n]$ back to a “continuous-time” signal, $y(t)$
 ▪ $y[n]$ is called a “**discrete-time**” signal
Sampling $x(t)$

- **UNIFORM SAMPLING** at $t = nT_s$
 - IDEAL: $x[n] = x(nT_s)$

Shannon Sampling Theorem
A continuous-time signal $x(t)$ with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.
Nyquist Rate

• “Nyquist Rate” Sampling
 – $f_s > \text{TWICE} \text{ the HIGHEST Frequency in } x(t)$
 – “Sampling above the Nyquist rate”

• BANDLIMITED SIGNALS
 – DEF: $x(t)$ has a HIGHEST FREQUENCY COMPONENT in its SPECTRUM
 – NON-BANDLIMITED EXAMPLE
 ▪ TRIANGLE WAVE is NOT BANDLIMITED
SPECTRUM for $x[n]$

- **INCLUDE ALL SPECTRUM LINES**
 - ALIASES
 - ADD INTEGER MULTIPLES of 2π and -2π
 - FOLDED ALIASES
 - ALIASES of NEGATIVE FREQUENCIES

- **PLOT versus NORMALIZED FREQUENCY**
 - i.e., DIVIDE f_o by f_s

$$\hat{\omega} = 2\pi \frac{f}{f_s} + 2\pi l$$
Example: Spectrum

- \(x[n] = A \cos(0.2\pi n + \phi) \)
- FREQS @ 0.2\(\pi \) and -0.2\(\pi \)
- ALIASES:
 - \{2.2\(\pi \), 4.2\(\pi \), 6.2\(\pi \), ...\} & \{-1.8\(\pi \), -3.8\(\pi \), ...\}
 - EX: \(x[n] = A \cos(4.2\pi n + \phi) \)
- ALIASES of NEGATIVE FREQ:
 - \{1.8\(\pi \), 3.8\(\pi \), 5.8\(\pi \), ...\} & \{-2.2\(\pi \), -4.2\(\pi \), ...\}
\[\hat{\omega} = 2\pi \frac{f}{f_s} \]

\[f_s = 1 \text{ kHz} \]

\[x[n] = A \cos(2\pi(100)(n/1000) + \varphi) \]

100-Hz Cosine Wave: Sampled with \(T_s = 1 \text{ msec} \) (1000 Hz)
\[\hat{\omega} = 2\pi \frac{f}{f_s} \]

\[f_s = 80 \text{kHz} \]

\[x[n] = A \cos(2\pi(100)(n/80) + \varphi) \]

100-Hz Cosine Wave: Sampled with \(T_s = 12.5 \text{ msec} \) (80 Hz)
Folding (a type of ALIASING)

- EXAMPLE: 3 different $x(t)$; same $x[n]$

$$f_s = 1000$$

$$\cos(2\pi(100)t) \rightarrow \cos[2\pi(0.1)n]$$

$$\cos(2\pi(1100)t) \rightarrow \cos[2\pi(1.1)n] = \cos[2\pi(0.1)n]$$

$$\cos(2\pi(900)t) \rightarrow \cos[2\pi(0.9)n]$$

$$= \cos[2\pi(0.9)n - 2\pi n] = \cos[2\pi(-0.1)n] = \cos[2\pi(0.1)n]$$

- 900 Hz “folds” to 100 Hz when $f_s = 1 \text{kHz}$
Digital Frequency $\hat{\omega}$ Again

Normalized Radian Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

Aliasing

Folded Alias

$$\hat{\omega} = \omega T_s = -\frac{2\pi f}{f_s} + 2\pi \ell$$
Spectrum (Folding Case)

\[\hat{\omega} = 2\pi \frac{f}{f_s} \]

\[f_s = 125 \text{Hz} \]

\[x[n] = A \cos(2\pi (100)(n/125) + \varphi) \]

100-Hz Cosine Wave: Sampled with \(T_s = 8 \text{ msec} \) (125 Hz)
Frequency Domains

\[\hat{\omega} = 2\pi \frac{f}{f_s} + 2\pi \ell \]

\[f = \frac{\hat{\omega}}{2\pi} f_s \]
Demos from Chapter 4

• CD-ROM DEMOS
• SAMPLING DEMO (**con2dis GUI**)
 - Different Sampling Rates
 ▪ Aliasing of a Sinusoid
• STROBE DEMO
 - Synthetic vs. Real
 - Television **SAMPLES** at 30 fps in the US / 25 fps in EU
• Sampling & Reconstruction
SAMPLING GUI (con2dis)
D-to-A Reconstruction

• Create continuous $y(t)$ from $y[n]$
 - **IDEAL**
 - If you have formula for $y[n]$
 - Replace n in $y[n]$ with $f_s t$
 - $y[n] = A\cos(0.2\pi n + \phi)$ with $f_s = 8000$ Hz
 - $y(t) = A\cos(2\pi(800)t + \phi)$
D-to-A is AMBIGUOUS!

- ALIASING
 - Given $y[n]$, which $y(t)$ do we pick? ??
 - INFINITE NUMBER of $y(t)$
 - PASSING THRU THE SAMPLES, $y[n]$
 - D-to-A RECONSTRUCTION MUST CHOOSE ONE OUTPUT

- RECONSTRUCT THE **SMOOTHEST** ONE
 - THE LOWEST FREQ, if $y[n] = \text{sinusoid}$
Spectrum (Aliasing Case)

\[\hat{\omega} = 2\pi \frac{f}{f_s} \]

\[f_s = 80 \text{Hz} \]

\[x[n] = A \cos(2\pi(100)(n/80) + \varphi) \]

100-Hz Cosine Wave: Sampled with \(T_s = 12.5 \text{ msec} \) (80 Hz)
Reconstruction (D-to-A)

- CONVERT STREAM of NUMBERS to $x(t)$
- “CONNECT THE DOTS”
- INTERPOLATION

INTUITIVE, conveys the idea
Sample and Hold Device

- CONVERT $y[n]$ to $y(t)$
 - $y[k]$ should be the value of $y(t)$ at $t = kT_s$
 - Make $y(t)$ equal to $y[k]$ for
 - $kT_s - 0.5T_s < t < kT_s + 0.5T_s$

STAIR-STEP APPROXIMATION
Square Pulse Case

Sampling and Zero-Order Reconstruction: $f_0 = 83 \ f_s = 200$

Original and Reconstructed Waveforms
Over-Sampling Case

Sampling and Zero-Order Reconstruction: $f_0 = 83 \, f_s = 800$

Original and Reconstructed Waveforms

EASIER TO RECONSTRUCT
Mathematical Model for D-to-A

\[y(t) = \sum_{n=-\infty}^{\infty} y[n] p(t - nT_s) \]

SQUARE PULSE:

\[p(t) = \begin{cases} 1 & -\frac{1}{2}T_s < t \leq \frac{1}{2}T_s \\ 0 & \text{otherwise} \end{cases} \]
Expand the Summation

$$\sum_{n=-\infty}^{\infty} y[n] p(t - nT_s) =$$

$$K + y[0] p(t) + y[1] p(t - T_s) + y[2] p(t - 2T_s) + K$$

- **SUM of SHIFTED PULSES** $p(t-nT_s)$
 - “**WEIGHTED**” by $y[n]$
 - CENTERED at $t=nT_s$
 - **SPACED** by T_s
 - RESTORES “**REAL TIME**”
Figure 4.17 Four different pulses for D-to-C conversion. The sampling period is $T_s = 0.005$, i.e., $f_s = 200$ Hz. Note that the duration of each pulse is approximately one or two times T_s.
TRIANGULAR PULSE (2X)
Optimal Pulse?

Called “Bandlimited Interpolation”

\[p(t) = \frac{\sin \frac{\pi t}{T_s}}{\frac{\pi t}{T_s}} \quad \text{for} \quad -\infty < t < \infty \]

\[p(t) = 0 \quad \text{for} \quad t = \pm T_s, \pm 2T_s, \ldots \]
• Next week <> Bonus Exam Review

• LAB TIME NOW